1. (i) The H^{+}ion in an (nitric) acid has been replaced by a metal ion OR by a Ca^{2+} ion \checkmark

DO NOT ALLOW it has been produced by the reaction of an acid and a base as this is stated in the question.
IGNORE references to replacement by $\mathrm{NH}_{4}{ }^{+}$ions or positive ions.
ALLOW H OR Hydrogen for H^{+};
DO NOT ALLOW Hydrogen atoms
ALLOW Ca OR Calcium for Ca^{2+}.
DO NOT ALLOW Calcium atoms
ALLOW 'metal' for 'metal ion
(ii) $2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Formulae \checkmark
Balance AND states \checkmark
ALLOW multiples
ALLOW (aq) OR (s) for $\mathrm{Ca}(\mathrm{OH})_{2}$
(iii) Accepts a proton OR accepts $\mathbf{H}^{+} \checkmark$

ALLOW H ${ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
ALLOW OH reacts with \boldsymbol{H}^{+}OR OH^{-}takes \boldsymbol{H}^{+}
ALLOW OH 'attracts' \boldsymbol{H}^{+}if 'to form water' is seen
DO NOT ALLOW OH neutralises H^{+}('neutralises' is in the question)
2. (a) (i) Calculate correctly $\frac{0.0880 \times 25.0}{1000}=2.20 \times 10^{-3} \mathrm{~mol}$

OR $0.00220 \mathrm{~mol} \checkmark$
ALLOW 0.0022 OR $2.2 \times 10^{-3} \mathrm{~mol}$
(ii) Calculates correctly $\frac{0.00220}{2}=1.10 \times 10^{-3} \mathrm{~mol}$

OR $0.00110 \mathrm{~mol} \checkmark$
ALLOW 0.0011 OR $1.1 \times 10^{-3} \mathrm{~mol}$
ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
(iii) $\frac{0.00110 \times 1000}{17.60}=0.0625 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\text { OR } 6.25 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark
$$

ALLOW 0.063 OR $6.3 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
ALLOW ECF for answer (ii) \times 1000/17.60
OR
ECF from (i) for answer (i)/ $2 \times 1000 / 17.60$ as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
(b) (i) (The number of) Water(s) of crystallisation

IGNORE hydrated OR hydrous
(ii) $142.1 \checkmark$

$$
\begin{aligned}
& \text { ALLOW } 142 \\
& \text { ALLOW } M_{r} \text { expressed as a sum } \\
& \text { ALLOW ECF from incorrect } M_{r} \text { and } x \text { is calculated correctly } \\
& x=\frac{(322.1-142.1)}{18.0}=10 \\
& \text { ALLOW ECF values of } x \text { from nearest whole number to } \\
& \text { calculator value } \\
& \text { ALLOW } 2 \text { marks if final answer is } 10 \text { without any working } \\
& \text { ALLOW } M_{r} \text { expressed as a sum } \\
& \text { ALLOW ECF from incorrect } M_{r} \text { and } x \text { is calculated correctly }
\end{aligned}
$$

(i) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

ALLOW $2 \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
ALLOW $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}{ }^{+}$
ALLOW any correct multiple
IGNORE state symbols
(ii) when the H^{+}in an acid is replaced by a metal ion $\mathbf{O R}$ an ammonium ion OR a + ion \checkmark

ALLOW H for H^{+};
ALLOW 'metal' for 'metal ion'
i.e.: H in an acid can be replaced by a metal
(iii) accepts a proton $\mathbf{O R}$ accepts H^{+} ALLOW donates a lone pair ALLOW removes H^{+} ALLOW forms OH^{-}ions
(iv) $132.1 \checkmark$

IGNORE units
NO OTHER ACCEPTABLE ANSWER
4. (i) $M\left(\mathrm{MgSO}_{4}\right)=120.4$ OR $120\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$

$$
\mathrm{mol} \mathrm{MgSO}_{4}=\frac{1.51}{120.4}=0.0125 \mathrm{~mol}
$$

ALLOW 0.013 up to calculator value of 0.012541528 correctly rounded (from $M=120.4 \mathrm{~g} \mathrm{~mol}^{-1}$)
ALLOW 0.013 up to calculator value of 0.012583333 correctly rounded (from $M=120 \mathrm{~g} \mathrm{~mol}^{-1}$)
ALLOW ecf from incorrect Mi.e. $1.51 \div M$
(ii) $\frac{1.57}{18.0}=0.0872(2)(\mathrm{mol})$

ALLOW 0.09 up to calculator value of 0.08722222
(iii) $\times=7 \checkmark$

ALLOW ecf i.e. answer to (ii) \div answer to (i)
ALLOW correctly calculated answer from 1 significant figure up to calculator value, ie, \times does not have to be a whole number. Likely response $=6.95 \checkmark$
5. (i) $\mathrm{Ca}(\mathrm{OH})_{2}$

IGNORE charges, even if wrong
(ii) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

IGNORE charges, even if wrong
6. (i) Molar mass of $\mathrm{CaCO}_{3}=100.1 \mathrm{~g} \mathrm{~mol}^{-1}$ (1)
$2.68 / 100.1=0.0268 / 0.027(\mathbf{1})$
(ii) $0.0268 \mathrm{~mol} \times 24,000=643 \mathrm{~cm}^{3}$ (1)
(iii) moles $\mathrm{HNO}_{3}=2 \times 0.0268$
$=0.0536 / 0.054 \mathrm{~mol}(\mathbf{1})$
(i.e. answer to (i) $\times 2$)
volume of $\mathrm{HNO}_{3}=0.0536 \times 1000 / 2.50=21.4 \mathrm{~cm}^{3}(\mathbf{1}) \quad 2$
7. (i)

MgO has reacted with $\mathrm{CO}_{2} \checkmark$
$\begin{array}{llr}\text { (ii) } & \text { Solid dissolves / disappears } \checkmark \\ & \text { Fizzing / bubbles } \checkmark & 2 \\ & \mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark & \\ & \mathrm{MgCO} & 2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark \\ & \text { both reactions form magnesium chloride } / \mathrm{MgCl}_{2} \checkmark & 3\end{array}$
8. (i) $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (l)
$\mathrm{CaO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
each balanced equation 1 mark (2)
all state symbols (1)
(ii) CaCO_{3} fizzes/ gas given off/ gas evolved / carbon dioxide evolved (1) 1
9. (i) a proton donor \checkmark
(ii) $\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$
10. CaCO_{3} reacts with (or neutralises) HCl (or $\mathrm{CaCO}_{3}+\mathrm{HCl}$ in an equation)
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(correct equation would score both marks)
11. (i) as a base (1) accepts a proton/ $\mathrm{H}+/$ neutralises an acid/ reacts with acid to form salt/ has a lone pair of electrons (1)
(ii) fertiliser (1) 1
(iii) manufacture of explosives/dyes/ nitric acid/ fibres/ ammonium nitrate/ urea/refrigeration/ cleaning agents/ fertiliser (if not allowed in (ii) (1) 1
12. (i) fizzing/gas/hydrogen evolved or Mg dissolves/disappears
[an incorrect observation negates this mark]
(ii) $2 \mathrm{HCl}+\mathrm{Mg} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
[correct formula for MgCl_{2}. Allow equation with $\mathrm{HI} / \mathrm{MgI}_{2}$ instead of HCl]
[balancing: e.g. $2 \mathrm{HCl}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgCl}+\mathrm{H}_{2}$ will get this mark but not the $\left.1^{\text {st }}\right]$
13. No mark scheme available
14. No mark scheme available

